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Abstract We consider a lattice gas interacting by the exclusion rule in the presence of a
random field given by i.i.d. bounded random variables in a bounded domain in contact with
particles reservoir at different densities. We show, in dimensions d ≥ 3, that the rescaled em-
pirical density field almost surely, with respect to the random field, converges to the unique
weak solution of a quasilinear parabolic equation having the diffusion matrix determined by
the statistical properties of the external random field and boundary conditions determined by
the density of the reservoir. Further we show that the rescaled empirical density field, in the
stationary regime, almost surely with respect to the random field, converges to the solution
of the associated stationary transport equation.

Keywords Random environment · Nongradient systems · Stationary nonequilibrium states

1 Introduction

In the last years there has been several papers devoted in understanding macroscopic prop-
erties of non equilibrium systems. Typical examples are systems in contact with two ther-
mostats at different temperature or with two reservoirs at different densities. A mathematical
model of open boundary systems is provided by stochastic models of interacting particles
systems performing a local reversible dynamics (for example a reversible hopping dynam-
ics) in a domain and some external mechanism of creation and annihilation of particles on
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the boundary of the domain, modeling the reservoirs, which makes the full process non re-
versible. There has been important classes of models, see for example [4, 6, 7, 14, 22] in
which it has been proved the law of large numbers for the empirical density in the stationary
regime. Typical generic feature of these systems is that they exhibit long range correlation
in their steady state. More recently breakthroughs were achieved analyzing the large devi-
ations principle for the stationary measure. We refer to [2, 3] for a review of works on the
statistical mechanics of non equilibrium processes based on the analysis of large deviations
properties of microscopic systems.

In this paper we consider a particles system evolving according to local conservative dy-
namics (Kawasaki) with hard core exclusion rule and with rates depending on a quenched
random field in a cylinder domain d ≥ 3 in which the basis, denoted �, are kept at differ-
ent densities. The rates of the interaction are chosen so that the system satisfies a detailed
balance condition with respect to a family of random Bernoulli measures (the random field
Ising model at infinite temperature). To model the presence of the reservoirs, we superim-
pose at the boundary, to the local-conservative dynamics, a birth and death process. The
rates of this birth and death process depend on the realizations of the random field and are
chosen so that a random Bernoulli measure with a suitable choice of the chemical potential
is reversible for it. This latter dynamic is of course not conservative and keeps the fixed
value of the density at the boundary. There is a flow of density through the full system and
the full dynamic is not reversible.

We derive for such a model the hydrodynamic limit dealing simultaneously both with
the randomness of the rates and with the open boundaries conditions. The rescaled empir-
ical density field almost surely, with respect to the random field, converges to the unique
weak solution of the quasilinear parabolic equation (2.15). In addition to this we prove the
hydrostatics, i.e. the rescaled empirical density field almost surely, with respect to the ran-
dom field, converges under the unique stationary measure of the evolution process to the
stationary solution of (2.15). This is obtained deriving first the hydrodynamic for the empir-
ical density field distributed according to the stationary measure. Then we exploit that the
stationary solution of (2.15) is unique and is a global attractor for the macroscopic evolu-
tion. These two ingredients, together with the weak compactness of the space of measures
allow to conclude. Similar strategy for proving the hydrostatic is used in the paper by Farfan
Vargas, Landim and Mourragui [9].

The bulk dynamic models electron transport in doped crystals. In this case the exclusion
rule is given by the Pauli principle and the presence of impurities in the crystals is the
origin of the presence of quenched random field, see [12]. The transport properties of such
systems in the case of periodic boundary condition on � has been studied by Faggionato
and Martinelli [8]. They derived in d ≥ 3, the hydrodynamic limit and gave a variational
formula for the bulk diffusion. Later, Quastel [20] derived in all dimensions for the same
model investigated by [8] the hydrodynamic limit for the local empirical density and proved
some regularity properties for the bulk diffusion, see for further comments Sect 2.2.

Applying the method proposed by Quastel, we could extend our results in all dimen-
sions. Since our aim is to understand the role of the randomness in the non stationary and
stationary regime and not the role of dimensions in the bulk dynamics we state and prove
our results in d ≥ 3. Dynamical Large deviations for the same model and always with peri-
odic boundary conditions have been derived in [19] as special case of a more general system
discussed there. The bulk dynamics is of the so-called nongradient type. Roughly speaking,
the gradient condition says that the microscopic current is already the gradient of a function
of the density field. Further it is not translation invariant, for a given disorder configuration.
To prove the hydrodynamic behavior of the system, we follow the entropy method intro-
duced by Guo, Papanicolaou and Varadhan [11] together with the results of [8]. The entropy
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method relies on an estimate of the entropy of the states of process with respect to a refer-
ence invariant state. By the general theory of Markov Processes the entropy of the state of a
process with respect to an invariant state decreases in time. The main problem is that in the
model considered the reference invariant state is not explicitly known. To overcome this dif-
ficulty we compute the entropy of the state of the process with respect to a product measure
with slowly varying profile. Since this measure is not invariant, the entropy does not need
to decrease and we need to estimate the rate at which it increases. This type of strategy has
been used in previous papers dealing with the same type of problems, see [14, 17], which
considered generalized exclusion process of non gradient type. The main difference with the
previous mentioned papers is the presence of the randomness in the model considered here.
This forces to consider on the boundary jump processes with rates depending on the external
random field. Important step to derive the final result is then a convenient application of the
ergodic theorem, see Proposition 3.4.

2 The Model and the Main Results

2.1 The Model

We consider the d-dimensional lattice Z
d with sites x = (x1, . . . , xd) and canonical basis

E = {e1, . . . , ed} and we assume in all the paper that d ≥ 3. We denote by � := [−1,1] ×
Td−1, where Td−1 is the (d − 1)-dimensional torus of diameter 1 and by � the boundary
of �.

Fix an integer N ≥ 1. Denote by �N ≡ {−N, . . . ,N}× Td−1
N the cylinder in Z

d of length
2N + 1 with basis the (d − 1)-dimensional discrete torus Td−1

N and by �N = {x ∈ �N |x1 =
±N} the boundary of �N . The elements of �N will be denoted by letters x, y, . . . and the
elements of � by u,v, . . . .

The disorder configuration is stochastically chosen by a translational invariant product
measure P on �D = [−A,A]Zd

, where A is a fixed positive number. We denote by E the
expectation with respect to P, and by α ≡ {α(x), x ∈ Z

d}, α(x) ∈ [−A,A], a disorder con-
figuration in �D . A configuration α ∈ �D induces in a natural way a disorder configuration
αN on �N , by identifying a cube centered at the origin of side 2N + 1 with �N . By a slight
abuse of notation whenever in the following we refer to a disorder configuration either on
�N or on Z

d we denote it by α. We denote by SN ≡ {0,1}�N and S ≡ {0,1}Z
d

the config-
uration spaces, both equipped with the product topology; elements of SN or S are denoted
by η, so that η(x) = 1, resp 0, if the site x is occupied, resp empty, for the configuration η.
Given α ∈ �D , we consider the random Hamiltonian Hα : SN → R,

Hα(η) = −
∑

x∈�N

α(x)η(x). (2.1)

We denote by μ
α,λ
N the grand canonical random Gibbs measure on SN associated to the

Hamiltonian (2.1) with chemical potential λ ∈ R, i.e the random Bernoulli product measure

μ
α,λ
N (η) =

∏

x∈�N

{
e[α(x)+λ]η(x)

e[α(x)+λ] + 1

}
. (2.2)

When λ = 0, we simply write μα
N . We denote by μα,λ(·) and when λ = 0, μα(·) the measure

(2.2) on the infinite product space S . Moreover, for a probability measure μ and a bounded
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function f , both defined on S or SN , we denote by Eμ(f ) the expectation of f with respect
to μ. We need to introduce also the canonical measures να,N

ρ ,

να,N
ρ (·) = μ

α,λ
N

(
·
∣∣∣∣
∑

x∈�N

ηx = ρ|�N |
)

for ρ ∈ [0, 1
|�N | , . . . ,1]. It is well known that the canonical and the grand canonical measures

are closely related if the chemical potential λ is chosen canonical conjugate to the density ρ,
in the sense that the average density with respect to μ

α,λ
N is equal to ρ. As in [8] one can

define the random empirical chemical potential and the annealed chemical potential λ0(ρ).
To our aim it is enough to consider λ0(ρ). For ρ ∈ [0,1], the function λ0(ρ) is defined as
the unique λ so that

E

[∫
η(0)dμα,λ(η)

]
= E

[
eα(0)+λ

1 + eα(0)+λ

]
= ρ. (2.3)

We will consider as reference measure the random Bernoulli product measure ν
α,N
ρ(·) on SN

defined for positive profile ρ : � → (0,1) by

ν
α,N
ρ(·) (η) =

∏

x∈�N

{
e[α(x)+λ0(ρ(x/N))]η(x)

e[α(x)+λ0(ρ(x/N))] + 1

}
, (2.4)

if ρ(·) ≡ ρ is constant, we shall denote simply ν
α,N
ρ(·) = να,N

ρ . We denote by ηx,y the configu-
ration obtained from η by interchanging the values at x and y:

ηx,y(z) =

⎧
⎪⎨

⎪⎩

η(x) if z = y,

η(y) if z = x,

η(z) otherwise,

(2.5)

and by ηx the configuration obtained from η by flipping the occupation number at site x:

ηx(z) =
{

η(z) if z �= x,

1 − η(x) if z = x.
(2.6)

Further, for f : SN → R, x, y ∈ �N , we denote

(∇x,yf )(η) = f (ηx,y) − f (η).

The disordered exclusion process on �N with random reservoirs at its boundary �N is the
Markov process on SN whose generator LN can be decomposed as

LN = L0
N + Lb

N , (2.7)

where the generators L0
N , Lb

N act on function f : SN → R as

(L0
Nf )(η) =

∑

e∈E

∑

x∈�N ,x+e∈�N

C(x, x + e;η)[(∇x,x+ef )(η)], (2.8)
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where e is a generic element of E , the rate

C(x, y;η) ≡ Cα(x, y;η) = exp

{
− (∇x,yH

α)(η)

2

}
; (2.9)

and

(Lb
Nf )(η) =

∑

x∈�N

Cb(x/N,η)
[
f (ηx) − f (η)

]
. (2.10)

To define the rate Cb(x/N,η) we fix a function b(·) on �, representing the density of the
reservoirs. We assume that b(·) is the restriction on � of a smooth function γ (·) defined on
a neighborhood V of �, γ : V → (0,1), γ ∈ C2(V ) and γ (u) = b(u) for u ∈ �. The rate
Cb is chosen so that Lb

N is reversible with respect to ν
α,N
γ (·)

Cb(x/N,η) = η(x) exp

{
−α(x) + λ0(b( x

N
))

2

}
+ (1 − η(x)) exp

{
α(x) + λ0(b( x

N
))

2

}
.

(2.11)

The first term in (2.11) is the creation rate, the second one is the annihilation rate. Next we
recall the relevant properties of C(x, y;η):

(a) detailed balance condition with respect to the measure (2.2);
(b) positivity and boundedness: there exists a > 0 such that

a−1 ≤ C(x, y;η) ≤ a; (2.12)

(c) translation covariant:

Cα(x, y;η) = Cτzα(x − z, y − z; τzη) = τzC
α(x − z, y − z;η), (2.13)

where for z in Z
d , τz denotes the space shift by z units on S × �D defined for all η ∈ S ,

α ∈ �D and g : S × �D → R by

(τzη)(x) = η(x + z), (τzα)(x) = α(x + z), (τzg)(η,α) = g(τzη, τzα). (2.14)

We omit to write in the notation the explicit dependence on the randomness α, unless
there is an ambiguity. The process arising from the full generator (2.7) is then a superposition
of a dynamics with a conservation law (the Kawasaki random dynamics) acting on the whole
�N and a birth and death process acting on �. Remark that if b(·) ≡ b0 for some positive
constant b0, then the generator LN , see (2.7), is self-adjoint in L2(ν

α,N
b0

) and the measure

ν
α,N
b0

is the stationary measure for the full dynamics LN . In the general case, when b(·) is
not constant, since the Markov process on SN with generator (2.7), is irreducible for all
N ≥ 1, there exists always an unique invariant measure but in general cannot be written in
an explicit form.

2.2 The Macroscopic Equation

The macroscopic evolution of the local particles density ρ is described by the quasi-linear
parabolic equation

⎧
⎪⎨

⎪⎩

∂tρ = ∇ · (D(ρ)∇ρ),

ρ(0, ·) = ρ0,

ρ(t, ·)|� = b(·) for t > 0,

(2.15)
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where D(ρ) is the diffusion matrix given in (2.17), b(·) ∈ C2(�) and ρ0 : � → [0,1] is the
initial profile. The diffusion matrix D(·) is the one derived in [8]. To define it, let 1

G ≡ {g : S × �D → R; local and bounded}, (2.16)

and for g ∈ G, �g(η) =∑
x∈Zd

(
τxg

)
(η,α). The �g(η) is a formal expression, but the dif-

ference ∇0,e�g(η) = �g(η
0,e) − �g(η) for e ∈ E is meaningful. For each ρ ∈ (0,1), let

D(ρ) = {Di,j (ρ), 1 ≤ i, j ≤ d} be the symmetric matrix defined, for every a ∈ R
d , by

the variational formula

(a · D(ρ)a) = 1

2χ(ρ)
inf
g∈G

d∑

i=1

E
[
Eμα,λ0(ρ)(

C(0, ei;η)
{
ai∇0,ei

η(0) + (∇0,ei
�g)(η)

}2)]
,

(2.17)
where λ0(ρ) is defined in (2.3), χ(ρ) is the static compressibility given by

χ(ρ) = E

[∫
η(0)2dμα,λ0(ρ)(η) −

(∫
η(0)dμα,λ0(ρ)(η)

)2]
, (2.18)

for a, b ∈ R
d , (a ·b) is the scalar vector product of a and b and Eμα,λ0(ρ)

(·) is the expectation
with respect to μα,λ0(ρ), see after (2.2), the random Bernoulli product measure on S with
annealed chemical potential λ0(ρ). In Theorem 2.1 of [8] it has been proved, for d ≥ 3 and
for ρ ∈ (0,1), the existence of the symmetric diffusion matrix defined in (2.17). Further it
has been proved that the coefficients Di,j (·) are nonlinear continuous functions in the open
interval (0,1) and there exists a constant C > 1, depending on dimensions and bound on the
random field, such that

1

C
≤ D(ρ) ≤ C1 ρ ∈ (0,1), (2.19)

where 1 is the d × d identity matrix. Quastel [20], proved that the bulk diffusion is continu-
ous on [0,1] and 1

2 -Holder continuous on the open interval. One expects the matrix D(·) to
be a smooth function of ρ [12]. Methods has been developed to prove higher regularity for
the bulk diffusion, see [1, 18], but their application to this model looks rather difficult.

We will assume all through the paper that D(·) is continuous in [0,1] and Lipschitz in
the open interval.

By weak solution of (2.15) we mean a function ρ(·, ·) : [0, T ] × � → R satisfying:

(IB1) ρ ∈ L2((0, T );H 1(�)):

∫ T

0
ds

(∫

�

‖ ∇ρ(s,u) ‖2du

)
< ∞. (2.20)

(IB2) For every function G(t,u) = Gt(u) in C 1,2
c ([0, T ]× ◦

�), where
◦
�= ]−1,1 [ × Td−1

and C 1,2
c ([0, T ]× ◦

�) is the space of functions from [0, T ]× ◦
� to R twice continuously

1A function g : S × �D → R is local if the support of g, �g , i.e. the smallest subset of Z
d such that g

depends only on {(η(x),α(x)) x ∈ �g}, is finite. The function g is bounded if supη supα |g(η,α)| < ∞.
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differentiable in � with continuous time derivative and having compact support in
◦
�

we have
∫

�

du{GT (u)ρ(T ,u) − G0(u)ρ(0, u)} −
∫ T

0
ds

∫

�

du(∂sGs)(u)ρ(s, u)

= −
∫ T

0
ds

{∫

�

duD(ρ(s,u))∇ρ(s,u) · ∇Gs(u)

}
.

(IB3) For any t ∈ (0, T ], Tr(ρ(t, ·)) = b(·), a.e., where the trace operator Tr(·) is the linear
operator from H 1(�) to L2(�) defined as the continuous extension of the operator
which associates to any function G ∈ C(�) its boundary value: Tr(G) = G|� , see [5].

(IB4) ρ(0, u) = ρ0(u) a.e.

Notice that, since the original particle model cannot have more than one particle at a
lattice site any solution ρ of (2.15) is between 0 and 1. The existence and uniqueness of the
weak solution of (2.15) when (2.19) holds and D(·) is Lipschitz continuous for ρ ∈ (0,1),
can be done using standard analysis tools, see [16]. In the appendix a proof of the existence
and of uniqueness is provided as consequence of the existence of the hydrodynamic limit
and the comparison theorem proved for solutions of (2.15).

Stationary Solution We denote by ρ̄ the stationary solution of (2.15), i.e. a function from

� → [0,1] so that ρ̄ ∈ H 1(�) and for G ∈ C 2
c (

◦
�) we have

{∫
�

duD(ρ̄(u))∇ρ̄(u) · ∇G(u) = 0,

Tr(ρ̄(·)) = b(·), a.e.
(2.21)

Existence of the weak solution of (2.21) when (2.19) holds, D(·) Lipschitz continuous and
b(·) smooth is obtained applying standard analysis tools, see for example [10]. We sketch it
in Proposition A.9.

2.3 The Main Results

For any T > 0, we denote by (ηt )t∈[0,T ] the Markov process on SN with generator N2 LN

starting from η0 = η and by Pη := Pα
η its distribution when the initial configuration is η. We

remind that we omit to write explicitly the dependence on α. The Pη is a probability measure
on the path space D([0, T ], SN), which we consider endowed with the Skorohod topology
and the corresponding Borel σ -algebra. Expectation with respect to Pη is denoted by Eη .
If μN is a probability measure on SN we denote PμN (·) = ∫

SN
Pη(·)μN(dη) and by EμN

the expectation with respect to PμN . For η ∈ SN , denote by πN = πN(du;η) the empirical
measure defined by

πN = 1

Nd

∑

x∈�N

η(x) δx/N (du), (2.22)

where δu(·) stands for the Dirac measure on � concentrated on u. Since η(x) ∈ {0,1}, rela-
tion (2.22) induces from PμN a distribution QμN on the Skorohod space D([0, T ], M1(�)),
where M1(�) is the set of positive Borel measures on � with total mass bounded by 1,
endowed with the weak topology. Denote by M0

1(�) the subset of M1(�) of all absolutely
continuous measures w.r.t. the Lebesgue measure with density bounded by 1:

M0
1(�) = {π ∈ M1(�) : π(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e. },



692 M. Mourragui, E. Orlandi

M0
1(�) is a closed subset of M1(�) endowed with the weak topology and D([0, T ],

M0
1(�)) is a closed subset of D([0, T ], M1(�)) for the Skorohod topology. The space

M1(�) is compact under the topology of weak convergence. For a measure π ∈ M1(�)

and a continuous function G : � → R we denote by 〈π,G〉 the integral of G with respect
to π

〈π,G〉 =
∫

�

duG(u)π(du).

To state next theorem we need the following definition.

Definition Given ρ(u)du ∈ M0
1(�), a sequence of probability measures (μN)N≥0 on SN is

said to correspond to the macroscopic profile ρ if, for any smooth function G and δ > 0

lim
N→∞

μN

{∣∣∣∣
1

Nd

∑

x∈�N

G(x/N)η(x) −
∫

�

G(u)ρ(u)du

∣∣∣∣> δ

}
= 0. (2.23)

Theorem 2.1 Let d ≥ 3 and assume that D(ρ) can be continuously extended to the closed
interval [0,1]. Let μN be a sequence of probability measures on SN corresponding to the
initial profile ρ0. Then, P-a.s. the sequence of probability measures (QμN )N≥0 is tight and
all its limit points Q∗ are concentrated on ρ(t, u)du, whose densities are weak solutions
of (2.15). Moreover if D(·) is Lipschitz continuous for ρ ∈ (0,1), then (QμN )N≥0 converges
weakly, as N ↑ ∞, to Q∗. This limit point is concentrated on the unique weak solution
of (2.15).

Denote by να,N
s the unique invariant measure of the Markov process (ηt )t∈[0,T ] with gen-

erator N2 LN . We have the following:

Theorem 2.2 Let d ≥ 3, assume that D(ρ) can be continuously extended to the closed
interval [0,1] and Lipschitz continuous for ρ ∈ (0,1). For every continuous function G :
� → R and every δ > 0,

lim
N→∞

να,N
s

{∣∣∣∣
1

Nd

∑

x∈�N

G(x/N)η(x) −
∫

�

G(u)ρ̄(u)du

∣∣∣∣> δ

}
= 0, P-a.e., (2.24)

where ρ̄(·) is the unique solution of (2.21).

3 Strategy of Proof and Basic Estimates

3.1 The Steps to Prove Theorem 2.1

To prove the hydrodynamic behavior of the system we follow the non gradient method
developed by [8] for this model, based on the Varadhan paper [23] and the entropy method
introduced by [11]. As explained in the introduction, since the reference invariant state is
not explicitly known, we compute the entropy of the state of the process with respect to a
product measure with slowly varying profile γ (·). We prove in Lemma 3.8 that, provided
γ (·) is smooth enough and takes the prescribed value b(·) at the boundary, the rate to which
the entropy increases is of the order of the volume, Nd , and for finite time T this implies
only a modification of the constant multiplying Nd .
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We divide the proof of the hydrodynamic behavior in three steps: tightness of the mea-
sures (QμN )N≥1, energy estimates and identification of the support of Q∗ as weak solution
of (2.15) with fixed boundary conditions. We then refer to [13], Chap. IV, that presents
arguments, by now standard, to deduce the hydrodynamic behavior of the empirical mea-
sures from the preceding results and the uniqueness of the weak solution of (2.15). We state
without proving the first two steps, tightness of the measures and energy estimates. The
proof of them can be easily derived from results already in the literature, which we refer to,
see [8, 17].

Proposition 3.1 (Tightness) For almost any disorder configuration α ∈ �D , the sequence
(QμN )N≥1 is tight and all its limit points Q∗ are concentrated on absolutely continuous
paths π(t, du) = ρ(t, u)du whose density ρ is positive and bounded above by 1:

Q∗{π : π(t, du) = ρ(t, u)du} = 1, Q∗{π : 0 ≤ ρ(t, u) ≤ 1} = 1. (3.1)

Tightness for non gradient systems in contact with reservoirs is proven in a way similar
to the one for non gradient systems with periodic boundary conditions, see [13], Chap. 7,
Sect. 6. The main difference relies on the fact that for systems in contact with reservoirs
the invariant states are not product probability measures and some additional argument is
required. This can be proven as in [17], Sect. 6.

In the next step we prove that P-a.s. every limit point Q∗ of the sequence (QμN
)N≥1 is

concentrated on paths whose densities ρ satisfy (2.20).

Proposition 3.2 P-a.s., every limit points Q∗ of the sequence (QμN )N≥1 is concentrated on
the trajectories that satisfies (IB1).

The proof can be done applying arguments as in Proposition A.1.1. of [14]. However the
latter proof requires an application of Feynman-Kac formula, for which we have to replace
our dynamic (2.7) (cf. [8]).

We then show that P-a.s. any limit point Q∗ is supported on densities ρ satisfying (2.15)
in the weak sense. This is proven in Proposition 3.3 and in Proposition 3.4 stated below.
Proposition 3.3 takes in account only the bulk dynamics and it is based on the [8] results.
The main step to prove it consists in replacing the empirical current defined in (3.17) by a
function of the density gradient. The proof of this important point, following [8], is given in
Theorem 3.10. Proposition 3.4 takes in account the boundary dynamics. For � ∈ N, x ∈ �N ,
with −N + � ≤ x1 ≤ N − � denote by η�(x) the average density of η in a cube of width
2� + 1 centered at x

η�(x) = 1

(2� + 1)d

∑

y:|y−x|≤�

η(y). (3.2)

For a function G on �, e ∈ E , ∂N
e G denotes the discrete (space) derivative in the direction e

(∂N
e G)(x/N) = N [G((x + e)/N) − G(x/N)] with x and x + e ∈ �N, (3.3)

and to short notation we denote by ∂N
k G := ∂N

ek
G for 1 ≤ k ≤ d .

Proposition 3.3 Assume that D(ρ) defined in (2.17) can be continuously extended in [0,1].
Then, P-a.s., for any function G in C 1,2

c ([0, T ]× ◦
�) and any δ > 0, we have

lim sup
c→0

lim sup
a→0

lim sup
N→∞

PμN (|BG,N
a,c | ≥ δ) = 0, (3.4)
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where

BG,N
a,c = N−d

∑

x∈�N

G(T ,x/N)ηT (x) − N−d
∑

x∈�N

G(0, x/N)η0(x)

− N−d
∑

x∈�N

∫ T

0
∂sG(s, x/N)ηs(x)ds

+
∑

1≤k,m≤d

∫ T

0
dsN1−d

∑

x∈�N

(∂N
k G)(s, x/N)

× {
Dk,m(η[aN]

s (x)){(2c)−1[η[aN]
s (x + cNem) − η[aN]

s (x − cNem)]}}. (3.5)

The proof is given in Sect. 3.3. Note that in the statement of Proposition 3.3 the function
G has compact support, so the boundary terms do not enter.

The last step states that P-a.s., any limit points Q∗ of the sequence (QμN )N≥1 is concen-
trated on the trajectories with fixed density at the boundary and equal to b(·):

Proposition 3.4 P-a.s., any limit point Q∗ of the sequence (QμN )N≥1 is concentrated on
the trajectories that satisfy (IB3).

The proof is given in Sect. 3.4.

3.2 Basic Estimates

Lemma 3.5 (Ergodic lemma) Let V : �D × � → R be a bounded function, local with
respect to the first variable and continuous with respect to the second variable, that is for
any α ∈ �D the function u → V (α,u) is continuous and there exists an integer � ≥ 1 such
that for all u ∈ � the support of V (·, u) ⊂ {−�, . . . , �}d . Then

lim
N→∞

N−d
∑

x∈�N

τxV (α, x/N) =
∫

�

E[V (·, u)]du P-a.s. (3.6)

Proof We decompose the left-hand side of the limit (3.6) in two parts

N−d
∑

x∈�N

τxV (α, x/N) = N−d
∑

x∈�N

(τxV (α, x/N) − E[V (·, x/N)])

+ N−d
∑

x∈�N

E[V (·, x/N)] −
∫

�

E[V (·, u)]du.

By the stationary of P and the continuity of u → E
[
V (·, u)

]
, the second term of the right-

hand side of the last equality converges to 0 as N → ∞. The first term converges to 0,
from Chebychef inequality and the classical method of moments usually used in the proof
of strong law of large numbers. �

We start recalling the definition of relative entropy, which is the main tool in the [11]
approach. Let ν

α,N
ρ(·) be the product measure defined in (2.4) and μ a probability measure on
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SN . Denote by H(μ|να,N
ρ(·) ) the relative entropy of μ with respect to ν

α,N
ρ(·) :

H(μ|να,N
ρ(·) ) = sup

f

{∫
f (η)μ(dη) − log

∫
ef (η)ν

α,N
ρ(·) (dη)

}
,

where the supremum is carried over all bounded functions on SN . Since ν
α,N
ρ(·) gives a positive

probability to each configuration, μ is absolutely continuous with respect to ν
α,N
ρ(·) and we

have an explicit formula for the entropy:

H(μ|να,N
ρ(·) ) =

∫
log

{
dμ

dν
α,N
ρ(·)

}
dμ. (3.7)

Further, since there is at most one particle per site, there exists a constant C, that depends
only on ρ(·), such that for all α ∈ �D

H(μ|να,N
ρ(·) ) ≤ CNd (3.8)

for all probability measures μ on SN (cf. comments following Remark V.5.6 in [13]). To
estimate the entropy of the states of the process with respect to the reference measure we
define the following functionals from L2(ν) to R

+:

D0
N(h, ν) = 1

2

∑

e∈E

∑

x,x+e∈�N

∫
C(x, x + e;η)(h(ηx,x+e) − h(η))2dν(η),

Db
N (h, ν) = 1

2

∑

x∈�N

∫
Cb(x/N,η)(h(ηx) − h(η))2dν(η).

(3.9)

Lemma 3.6 Let γ : � → (0,1) be a smooth function such that γ |� = b(·). For any α ∈ �D

and a > 0 there exists a positive constant C0 ≡ C0(A,‖∇γ ‖∞) so that for any f ∈ L2(ν
α,N
γ (·) ),

∫

SN

f (η)L0
Nf (η)dν

α,N
γ (·) (η) ≤ −

(
1 − 1

2a

)
D0

N(f, ν
α,N
γ (·) ) + C0N

d−2(a + 1)‖f ‖2
L2(ν

α,N
γ (·) )

,

(3.10)
∫

SN

f (η)Lb
Nf (η)dν

α,N
γ (·) (η) = −Db

N (f, ν
α,N
γ (·) ). (3.11)

Proof By (3.9),

∫

SN

f (η)L0
Nf (η)dν

α,N
γ (·) (η)

= −D0
N(f, ν

α,N
γ (·) )

+ 1

2

∑

e∈E

∑

x,x+e∈�N

∫
C(x, x + e;η)(∇x,x+ef )(η)f (ηx,x+e)R1(x, x + e;η)dν

α,N
γ (·) (η),

where

R1(x, x + e;η) = (∇x,x+eη(x))(e(N−1∂N
e λ0(γ (x/N))) − 1).
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By the elementary inequality 2uv ≤ au2 + a−1v2 which holds for any a > 0, for any x, x +
e ∈ �N

∫
C(x, x + e;η)(∇x,x+ef )f (ηx,x+e)R1(x, x + e, η)dν

α,N
γ (·) (η)

≤ 1

2a

∫
C(x, x + e;η)(∇x,x+ef )2dν

α,N
γ (·) (η)

+ a

2

∫
C(x, x + e;η)f (ηx,x+e)2(R1(x, x + e))2dν

α,N
γ (·) (η).

To conclude the proof it remains to use Taylor expansion and an integration by part in the
second term of the right-hand side of the last inequality. On the other hand, since γ |� = b(·)
the measure ν

α,N
γ (·) is reversible with respect to Lb

N . A simple computation shows that

∫

SN

f (η)Lb
Nf (η)dν

α,N
γ (·) (η) = −Db

N (f, ν
α,N
γ (·) ). �

Lemma 3.7 Let ρ,ρ0 : � → (0,1) be two smooth functions. There exists a positive constant
C ′

0 ≡ C ′
0(A,‖∇ρ0‖∞,‖∇ρ‖∞) such that for any probability measure μN on SN and for any

α ∈ �D ,

D0
N

(√
dμN

dν
α,N
ρ(·)

, ν
α,N
ρ(·)

)
≤ 2D0

N

(√
dμN

dν
α,N
ρ0(·)

, ν
α,N
ρ0(·)

)
+ C ′

0N
d−2. (3.12)

Proof Denote by f (η) = dμN

dν
α,N
ρ(·)

(η) and h(η) = dμN

dν
α,N
ρ0(·)

(η). Since f (η) = h(η)
dν

α,N
ρ0(·)(η)

dν
α,N
ρ(·) (η)

we ob-

tain for e ∈ E and x, x + e ∈ �N the following

∫

SN

C(x, x + e;η)[∇x,x+e

√
f (η)]2dν

α,N
ρ(·) (η)

=
∫

SN

C(x, x + e;η)[√h(ηx,x+e)R2(x, x + e;η) + ∇x,x+e

√
h(η)]2dν

α,N
ρ0(·)(η)

≤ 2
∫

SN

C(x, x + e;η)[∇x,x+e

√
h(η)]2dν

α,N
ρ0(·)(η)

+ 2
∫

SN

C(x, x + e;η)h(ηx,x+e)[R2(x, x + e;η)]2dν
α,N
ρ0(·)(η),

where

R2(x, x + e;η) = exp{(1/2)N−1∂N
e [λ0(ρ(x/N)) − λ0(ρ0(x/N))]∇x,x+eη(x)} − 1.

We conclude the proof using Taylor expansion and integration by parts. �

Denote by SN
t the semigroup associated to the generator N2 LN . Given a probability

measures μN on SN denote by μN(t) the state of the process at time t : μN(t) = μNSN
t .

Recall that γ : � → (0,1) is a smooth profile equal to b at the boundary of �. Let hN
t be the



Lattice Gas Model in Random Medium and Open Boundaries 697

density of μN(t) with respect to ν
α,N
γ (·) . Let L∗

γ,N be the adjoint of LN in L2(ν
α,N
γ (·) ). It is easy

to check that

∂th
N
t = N2 L∗

γ,NhN
t . (3.13)

Notice that L∗
γ,N is not a generator because ν

α,N
γ (·) is not an invariant measure for the Markov

process with generator LN . We denote by HN(t) the entropy of μN(t) with respect to ν
α,N
γ (·) ,

see (3.7),

HN(t) := H(μN(t)|να,N
γ (·) ). (3.14)

Lemma 3.8 There exists positive constant C = C(‖∇γ ‖∞) such that for any a > 0 and for
any α ∈ �D

∂tHN(t) ≤ −2(1 − a)N2 D0
N

(√
hN

t , ν
α,N
γ (·)
)

− 2N2 Db
N

(√
hN

t , ν
α,N
γ (·)
)

+ C

a
Nd.

Proof By (3.13) and the explicit formula for the entropy we have that

∂tHN(t) = N2
∫

SN

hN
t LN log(hN

t )dν
α,N
γ (·) .

Using the basic inequality a(logb − loga) ≤ −(
√

a − √
b)2 + (b − a) for positive a and b,

we obtain

∂tHN(t) ≤ −2N2 D0
N

(√
hN

t , ν
α,N
γ (·)
)

− 2N2 Db
N

(√
hN

t , ν
α,N
γ (·)
)

+ N2
∫

SN

L0
NhN

t dν
α,N
γ (·) + N2

∫

SN

Lb
NhN

t dν
α,N
γ (·) . (3.15)

Since γ (u) = b(u) for u ∈ �, ν
α,N
γ (·) is reversible with respect to Lb

N . This implies that

∫

SN

Lb
NhN

t dν
α,N
γ (·) = 0.

Next we bound
∫

SN
L0

NhN
t dν

α,N
γ (·) in terms of D0

N . Denote by R : R → R the function defined
by R(u) = eu − 1 − u. A standard computation shows that

N2
∫

SN

L0
NhN

t dν
α,N
γ (·)

= N2
∑

e∈E

∑

x,x+e∈�N

∫
C(x, x + e;η)hN

t (η)R(N−1∂N
e λ0(γ (x/N))∇x,x+eη(x))dν

α,N
γ (·) (η)

+ N
∑

e∈E

∑

x,x+e∈�N

(∂N
e λ0(γ (x/N))

∫
Wx,x+e(η)hN

t (η)dν
α,N
γ (·) (η), (3.16)

where Wx,x+e(η) is the current over the bond (x, x + e):

Wx,x+e(η) ≡ C(x, x + e;η)[η(x) − η(x + e)]. (3.17)
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We will often omit to write the dependence of Wx,x+e(η) on η. By Taylor expansion and

the elementary inequality |R(u)| ≤ u2

2 e|u|, we obtain using the fact that γ is smooth and
hN

t is a probability density with respect to ν
α,N
γ (·) , that the first term of the right-hand side of

(3.16) is bounded by C Nd for some positive constant C. On the other hand integrating by
part, applying the same computations as in Lemma 5.1 of [17], we obtain that there exists a
constant C0 = C(‖∇γ ‖∞) so that for any a > 0

∫
Wx,x+eh

N
t dν

α,N
γ (·) ≤ 1

a

∫
C(x, x + e;η)

(
∇x,x+e

√
hN

t

)2
dν

α,N
γ (·) + C0{a + N−1}

for x, x + e ∈ �N . �

For z ∈ �N , M ∈ N denote by �M(z) the intersection of a cube centered at z ∈ �N of
edge 2M + 1 with �N , i.e.

�M(z) := {z + �M} ∩ �N. (3.18)

For probability measure νN on SN , denote by D0
M,z(· , νN) the Dirichlet form corresponding

to jumps in �M(z):

D0
M,z(f, νN) = 1

2

∑

x,x+e∈�M(z)

∫
C(x, x + e;η)(∇x,x+ef (η))2dνN(η). (3.19)

Similarly, for z ∈ �N define Db
M,z(· , νN) the Dirichlet form corresponding to creation and

destruction of particles at sites in �N which are at distance less than M from z:

Db
M,z(f, νN) = 1

2

∑

x∈�N ∩�M(z)

∫
Cb(x/N,η)(f (ηx) − f (η))2dνN(η). (3.20)

Fix any z ∈ �N denote by f
z,N
t the Radon-Nikodym derivative of μN(t) with respect to

ν
α,N
b(z/N), the random Bernoulli measure on SN with constant parameter equal to b( z

N
). Recall

that we denoted by hN
t the Radon-Nikodym derivative of μN(t) with respect to ν

α,N
γ (·) and

that b( z
N

) = γ ( z
N

) for z ∈ �. We have the following result.

Lemma 3.9 Take M ∈ N, M < N . There exists a positive constant C0 = C(‖∇γ ‖∞) de-
pending only on γ (·) such that for any z ∈ �N

D0
M,z

(√
f

z,N
t , ν

α,N
b(z/N)

)
≤ 2D0

M,z

(√
hN

t , ν
α,N
γ (·)
)

+ C0
Md

N2
,

Db
M,z

(√
f

z,N
t , ν

α,N
b(z/N)

)
≤ 2Db

M,z

(√
hN

t , ν
α,N
γ (·)
)

+ C0
Md+1

N2
.

The proof is similar to the proof of Lemma 3.7.

3.3 Proof of Proposition 3.3

We prove in this section Proposition 3.3. Let Q∗ be a limit point of the sequence (QμN )N≥1

and assume, without loss of generality, that P-a.s., QμN converges to Q∗. Fix a function G

in C 1,2
c ([0, T ]× ◦

�). For α ∈ �D consider the PμN martingales with respect to the natural
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filtration associated with (ηt )t∈[0,T ], MG
t ≡ M

G,N,α
t and N G

t ≡ N G,N,α
t , t ∈ [0, T ], defined

by

MG
t = 〈πN

t ,Gt 〉 − 〈πN
0 ,G0〉 −

∫ t

0
(〈πN

s , ∂sGs〉 + N2 LN 〈πN
s ,Gs〉) ds,

N G
t = (MG

t )2 −
∫ t

0
{N2 LN(〈πN

s ,Gs〉)2 − 2〈πN
s ,Gs〉N2 LN 〈πN

s ,Gs〉}ds.

(3.21)

A computation of the integral term of N G
t shows that the expectation of the quadratic varia-

tion of MG
t vanishes as N ↑ 0. Therefore, by Doob’s inequality, for every δ > 0, P-a.s.,

lim
N→∞

PμN
[ sup
0≤t≤T

|MG
t | > δ] = 0. (3.22)

By (2.13) and since for any s ∈ [0, T ] the function Gs has compact support in
◦
�, a summa-

tion by parts permits to rewrite the integral term of MG
t as

∫ t

0
〈πN

s , ∂sGs〉ds +
∫ t

0

{
N1−d

d∑

k=1

∑

x∈�N

(∂N
k Gs)(x/N)Wx,x+ek

(ηs)

}
ds, (3.23)

where the current Wx,x+ek
is defined in (3.17). To localize the dynamics define for any 0 <

r < 1

�r = [−r, r] × Td−1, �rN = {(x1, . . . , xd) ∈ �N : −rN ≤ x1 ≤ rN},
�rN = {x ∈ �rN : x1 = ±rN}. (3.24)

Set, for 0 < a < c < 1, k = 1, . . . , d ,

V
N,c,a
k (η,α) = NW0,ek

+
d∑

m=1

Dk,m

(
η[aN](0)

) {
(2c)−1[η[aN](cNem) − η[aN](−cNem)

]}
.

(3.25)
Next theorem is the main step in the proof of Proposition 3.3.

Theorem 3.10 Assume that D(·) defined in (2.17) can be continuously extended in [0,1].
Then, P-a.s., for any G ∈ C 1,2

c ([0, T ]× ◦
�),

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EμN

[∣∣∣∣N
−d

∫ T

0

∑

x∈�N

Gs(x/N)τxV
N,c,a
k (ηs, α) ds

∣∣∣∣

]
= 0 (3.26)

for k = 1, . . . , d .

Proof As in the proof of Theorem 3.2, Sect. 4, of [8], by the regularity of the test function G,
we first replace the current Wx,x+ek

appearing in τxV
N,c,a
k (ηs, α) by its local mean around x.

More precisely for any � ≥ 1 we have

lim
N→∞

EμN

[∣∣∣∣N
−d+1

∫ T

0

∑

x∈�N

Gs(x/N)
[
Wx,x+ek

− W̃ �
x,x+ek

]
ds

∣∣∣∣

]
= 0,
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where W̃ �
x,x+ek

is the local mean of the current

W̃ �
x,x+ek

= 1

(2�1 + 1)d

∑

|y−x|≤�1

Wy,y+ek

and �1 = � − √
�.

The second step is to note that, since Gs(·) has compact support in
◦
� for all s ∈ [0, T ],

we have
∑

x∈�N

Gs(x/N)τx

(
Lb

Ng
)= 0,

for any local function g ∈ G, see (2.16). Then, by martingale methods P-a.s.,

lim sup
N→∞

EμN

[∣∣∣∣
∫ T

0
ds

(
N−d+1

∑

x∈�N

Gs(x/N)τx L0
Ng

)∣∣∣∣

]
= 0. (3.27)

By the regularity of Gs as done before, we can replace τx L0
Ng by its local mean.

Let 0 < θ < 1 such that for any t ∈ [0, T ], the support of the function Gt is a subset of
�(1−2θ). Fix a smooth function γθ : � → (0,1) which coincides with b at the boundary of
� and constant inside �(1−θ). Denote by

Ṽ
N,c,a
k,�,g (ηs) = NW̃�

0,ek
+ N

1

(2�1 + 1)d

∑

|y|≤�1

τy(L0
Ng)

+
d∑

m=1

Dk,m

(
η[aN](0)

){
(2c)−1

[
η[aN](cNem) − η[aN](−cNem)

]}
,

and by Z
N,c,a
k,�,g (G,η) the quantity

Z
N,c,a
k,�,g

(
G,η

)= N−d
∑

x∈�N

G(x/N)τxṼ
N,c,a
k,�,g (η).

The proof of (3.26) is achieved once we show that

inf
g∈G

lim sup
c↓0,a↓0,�↑∞,N↑∞

EμN

[∣∣∣∣
∫ T

0
Z

N,c,a
k,�,g

(
Gs,ηs,

)
ds

∣∣∣∣

]
= 0

for k = 1, . . . , d . Since the entropy of μN with respect to ν
α,N
γθ (·) is bounded by Cθ |�N | for

some finite constant Cθ , by the entropy inequality

EμN

[∣∣∣∣
∫ T

0
Z

N,c,a
k,�,g

(
Gs,ηs

)
ds

∣∣∣∣

]

≤ Cθ

B
+ 1

BNd
log E

ν
α,N
γθ (·)

[
exp

{
BNd

∣∣∣∣
∫ T

0
Z

N,a,c
k,�,g

(
Gs,ηs

)
ds

∣∣∣∣

}]
(3.28)

for any positive B . Since e|x| ≤ ex + e−x and

lim supN−d log{aN + bN } ≤ max{lim supN−d logaN, lim supN−d logbN },
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we may remove the absolute value in the second term of (3.28), provided our estimate re-
mains in force if we replace G by −G. By the Feynman-Kac formula,

1

BNd
log E

ν
α,N
γθ (·)

[
exp

{
BNd

∫ T

0
Z

N,a,c
k,�,g

(
Gs,ηs

)
ds

}]
≤ 1

BNd

∫ T

0
λ

�,g

N,c,a(Gs) ds,

where λ
�,g

N,c,a(Gs) is the largest eigenvalue of the N2{Lsym

N +BZ
N,c,a
k,�,g (Gs, η)} where Lsym

N :=
1
2 (LN + L∗

γθ ,N ) and L∗
γθ ,N is the adjoint of LN in L2(ν

α,N
γθ (·)). By the variational formula for

the largest eigenvalue, for s ∈ [0, T ], we have that

1

BNd
λ

�,g

N,c,a(Gs) = sup
f

{∫
Z

N,c,a
k,�,g

(
Gs,η

)
f (η)ν

α,N
γθ (·)(dη) + N2−d

B

〈
LN

√
f ,
√

f
〉
γθ (·)

}
.

In this formula the supremum is carried over all densities f with respect to ν
α,N
γθ (·). Since γθ (·)

coincides with b(·) on �, Lb
N is reversible with respect to γθ (·), so that 〈Lb

N

√
f ,

√
f 〉γθ (·) is

negative. We then apply (3.10) of Lemma 3.6 to estimate 〈LN

√
f ,

√
f 〉γθ (·) by

−(1/2)D0
N(

√
f , ν

α,N
γθ (·)) + C ′

θN
d−2 for some constant C ′

θ . To prove the theorem we need
to show that

inf
g∈G

lim sup
c↓0,a↓0,�↑∞,N↑∞

∫ T

0
ds sup

f

{∫
Z

N,c,a
k,�,g

(
Gs,η

)
f (η)ν

α,N
γθ (·)(dη)− 1

B
N2−d D0

N(
√

f , να,N
γθ

)

}
= 0

for every B > 0 and then let B ↑ ∞. Notice that for N large enough and a, c small
enough, the function Z

N,c,a
k,�,g (Gs, η) depends on the configuration η only through the vari-

ables {η(x), x ∈ �(1−θ)N }. Since γθ (·) is constant, say equal to γ0 in �(1−θ), we may re-
place ν

α,N
γθ (·) in the previous formula by να,N

γ0
. The να,N

γ0
is reversible for L0

N and therefore
D0

N(· , να,N
γ0

) is the Dirichlet form associated to the generator L0
N . Since the Dirichlet form is

convex, it remains to show that

inf
g∈G

lim sup
c↓0,a↓0,�↑∞,N↑∞

∫ T

0
ds sup

f

{∫
Z

N,c,a
k,�,g

(
Gs,η

)
f (η)ν

α,N
γ0(·)(dη)− 1

B
N2−d D0

N(
√

f , να,N
γ0

)

}
= 0

for every B > 0. This result has been proved in [8], Proposition 4.1. �

Proof of Proposition 3.3 By (3.21), (3.23) and (3.25), applying Theorem 3.10 we ob-
tain (3.4). �

3.4 Proof of Proposition 3.4

For a > 0, u ∈ � denote

ιa(u) = 1

|[−a, a]d ∩ �|1{[−a,a]d∩�}(u); (3.29)

and for A ⊂ � define the sets A± as

A+ = {(u1, . . . , ud) ∈ A : u1 > 0}, A− = {(u1, . . . , ud) ∈ A : u1 < 0}. (3.30)
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We define similarly A+
N and A−

N when AN ⊂ �N . Let G(·, ·) ∈ C1,2([0, T ] × �), μ ∈
D([0, T ], M1(�)) and for 0 < a < c < 1, define the following functional

F̂ G
a,c

(
μ(·, ·)) =

∫ T

0
ds

∫

�(1−c)

du
{
Gs(u) (2c)−1

[(
μs � ιa

)
(u + ce1) − (

μs � ιa
)
(u − ce1)

]}

+
∫ T

0
ds

∫

�

du∂e1Gs(u)
(
μs � ιa

)
(u) −

∫ T

0
ds

{∫

�

b(u)n1(u)Gs(u)dS

}
,

(3.31)

where Gs(u) ≡ G(s,u), n = (n1, . . . ,nd) is the outward unit normal vector to the boundary
surface � and dS is the surface element of �. The proof of Proposition 3.4 follows from the
next lemma.

Lemma 3.11 For G(·, ·) ∈ C1,2([0, T ] × �), P-a.s. we have

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EQ
μN

[∣∣∣F̂ G
a,c

(
μN(·, ·))

∣∣∣
]

= 0.

Proof To short notation, denote fs(u) := (μs � ιa
)
(u). Taylor expanding we have that

∫

�(1−c)

du
{
Gs(u) (2c)−1

[
fs(u + ce1) − fs(u − ce1)

]}

= 1

2c

∫

(�\�(1−2c))
+

Gs(u − ce1)fs(u)du − 1

2c

∫

(�\�(1−2c))
−

Gs(u + ce1)fs(u)du

−
∫

�(1−2c)

∂e1Gs(u)fs(u)du + c

∫

�(1−2c)

R(G, c, s, u)fs(u)du, (3.32)

where |R(G,c, s, u)| ≤ supu∈� sups∈[0,T ] |∂2
e1

Gs(·)|. Since fs(u) ≤ 1 uniformly in s and u

∣∣∣∣
∫

�(1−c)

R(G, c, s, u)fs(u)du

∣∣∣∣≤ 2 sup
u∈�

sup
s∈[0,T ]

|∂2
e1

Gs(u)|, (3.33)

and
∣∣∣∣
∫

�(1−2c)

∂e1Gs(u)fs(u)du −
∫

�

∂e1Gs(u)fs(u)du

∣∣∣∣≤ 2c sup
u∈�

sup
s∈[0,T ]

|∂e1Gs(u)|.

Taking in account (3.32), (3.29) and (3.33) the lemma is then proven once we show that
P-a.s. the following holds

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EμN

[∣∣∣∣
∫ T

0
ds

{
1

2cNd

∑

x∈(�(1−a)N \�(1−a−2c)N )±
Gs

(
x

N

)
ηaN

s (x)

− 1

Nd−1

∑

x∈�±
N

b

(
x

N

)
Gs

(
x

N

)}∣∣∣∣

]
= 0, (3.34)
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where for 0 < ε < 1, �εN and (�εN)+ are defined in (3.24) and below (3.30). By adding
and subtracting the same quantity in the expectation of (3.34), it is easy to see that the limit
(3.34) follows once the next two lemmas are proven. �

Lemma 3.12 For G(·, ·) ∈ C1,2([0, T ] × �), P-a.s. we have

lim
�→∞

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EμN

[∣∣∣∣
∫ T

0
ds

{
1

2cNd

∑

x∈(�(1−a)N \�(1−a−2c)N )±
Gs(x/N)ηaN

s (x)

− 1

Nd−1

∑

x∈�±
(1−�/N)N

Gs(x/N)η�
s (x)

}∣∣∣∣

]
= 0. (3.35)

Lemma 3.13 For G(·, ·) ∈ C1,2([0, T ] × �), P-a.s. we have

lim
�→∞

lim sup
N→∞

EμN

[∣∣∣∣
∫ T

0
ds

{
1

Nd−1

∑

x∈�±
(1−�/N)N

Gs(x/N)η�
s (x)

− 1

Nd−1

∑

x∈�±
N

b(x/N)Gs(x/N)

}∣∣∣∣

]
= 0. (3.36)

Proof of Lemma 3.12 The summation in (3.35) contains two similar terms. We consider the
one corresponding to the summation of the right-hand side of �N (i.e. the one with signe
+). By Taylor expansion applied to the function G, the expectation in the statement of the
lemma is bounded above by

EμN

[∣∣∣∣
∫ T

0
ds

1

Nd−1

∑

x̌∈Td−1
N

Gs

(
1,

x̌

N

){
1

2cN

N(1−a)∑

x1=N(1−a−2c)+1

(
ηaN

s (x1, x̌) − η�
s (N − �, x̌)

)}∣∣∣∣

]

+ R(N,a, c,G),

where for x1 ∈ [−N,N ], x̌ = (x2, . . . , xd) ∈ Td−1
N the vector (x1, x̌) stands for the el-

ement (x1, x2, . . . , xd) ∈ �N . We denoted by R(N,a, c,G) a quantity so that for G ∈
C1,2([0, T ] ×�),

lim sup
c→0

lim sup
a→0

lim sup
N→∞

|R(N,a, c,G)| = 0. (3.37)

The next step consists in replacing the density average over a small macroscopic box of
length aN by a large microscopic box. More precisely, for N large enough, the expectation
of the last quantity is bounded above by

C‖G‖∞ sup
2�<|y|≤2Nc

EμN

[∫ T

0
ds

1

Nd−1

∑

x̌∈Td−1
N

∣∣∣η�
s

(
(N − �, x̌) + y

)− η�
s (N − �, x̌)

∣∣∣
]

+ R(N,a, c, �), (3.38)

where for all �, R(N,a, c, �) satisfy (3.37) and C is a positive constant. Observe that the
first term of the previous formula is not depending on a but only on c,N and �.
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In view of the estimate (3.12) and Lemma 3.8, by the usual two blocks estimate, the first
term of (3.38) converges to 0 an N ↑ ∞, c ↓ 0 and � ↑ ∞. This concludes the proof of
Lemma 3.12. �

Proof of Lemma 3.13 The summation in (3.36) contains two similar terms. We consider the
one corresponding to the summation of the right-hand side of �N . Taylor expanding Gs(·)
we bound above the expectation in (3.36) by

‖G‖∞
1

Nd−1

∑

y∈�+
N

EμN

[∫ T

0
ds

∣∣∣η�
s (y − �e1) − b(y/N)

∣∣∣
]

+ C
�

N
, (3.39)

where C is a positive constant depending on T and ‖∇G‖∞. For any fixed positive integer �

denote by ��
0 = {(0, x̂) : x̂ ∈ Td−1

N , |x̂| ≤ �} = ({0} × Td−1
N ) ∩ ��(0), for notation see (3.18).

For u ∈ �, denote

D̃
b,u
�,0

(
f, ν

)= 1

2

∑

x∈��
0

∫
C̃b

0 (u, x, η)
(
f (ηx) − f (η)

)2
dν(η),

where

C̃b
0 (u, x, η) = η(x) exp

{
−α(x) + λ0(b(u))

2

}
+ (1−η(x)) exp

{
α(x) + λ0(b(u))

2

}
. (3.40)

The difference with the rate in (2.11) is that here u is fixed.
Let ν

α,N
b(u) be the product measure with constant profile b(u). Let f : SN → R, denote by

f � the conditional expectation of f with respect to the σ -algebra generated by {η(z) : z ∈
��(0)}:

f �(ξ) = 1

ν
α,�
b(u)(ξ)

∫
1{η;η(z)=ξ(z),z∈��(0)}f (η)dν

α,N
b(u)(η) for all ξ ∈ {0,1}��(0),

where ν
α,�
b(u) is the restriction of ν

α,N
b(u) to {0,1}��(0).

Note that |η�(0) − b(u)| depends only on coordinates on the box ��(0), then by Fubini’s
Theorem,

EμN

[∫ T

0
ds

∣∣∣η�
s (y−�e1)−b(y/N)

∣∣∣
]

= T

∫ ∣∣∣η�(0)−b(y/N)

∣∣∣
(
τ−(y−�e1)f̄

y,N

T

)�
(η)dν

α,�

b(
y
N

)
(η)

(3.41)
where f̄

y,N

T = 1
T

∫ T

0 f
y,N
s ds and for all 0 ≤ s ≤ T , f

y,N
s is the density of μN

s with respect to

the product measure ν
α,N

b(
y
N

)
with constant profile b(

y

N
). The density

(
τ−(y−�e1)f̄

y,N

T

)�
stands

for the conditional expectation of τ−(y−�e1)f̄
y,N

T with respect to the σ -algebra generated by
{η(z) : z ∈ ��(0)}.

Remark that, since the Dirichlet form is convex and since the conditional expectation is
an average,

D̃
b,

y
N

�,0

(√(
τ−(y−�e1)f̄

y,N

T

)�
, ν

α,�
b(y/N)

)
≤ D̃

b,
y
N

�,0

(√
τ−(y−�e1)f̄

y,N

T , ν
α,N
b(y/N)

)

= Db
�,y−�e1

(√
f̄

y,N

T , ν
α,N
b(y/N)

)

≤ 1

T

∫ T

0
Db

�,y−�e1

(√
f

y,N
s , ν

α,N
b(y/N)

)
ds. (3.42)
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Applying Lemma 3.9 we obtain from (3.42)

N1−d
∑

y∈�N

D̃
b,

y
N

�,0

(√(
τ−(y−�e1)f̄

y,N

T

)�
, ν

α,�
b(y/N)

)

≤ 1

T

∫ T

0

{
N1−d

∑

y∈�N

Db
�,y−�e1

(√
f

y,N
s , ν

α,N
b(y/N)

)}
ds

≤ 2
1

T

∫ T

0

{
N1−d

∑

y∈�N

Db
�,y−�e1

(√
hN

s , ν
α,N
γ (·)
)}

ds + C0
�d+1

N2

≤ CT

N
+ C0

�d+1

N2
, (3.43)

for some constant CT that depends on T . By the same argument we obtain the bound on the
Dirichlet form D0

�,0,

N1−d
∑

y∈�N

D0
�,0

(√(
τ−(y−�e1)f̄

y,N

T

)�
, ν

α,�
b(y/N)

)
≤ CT

N
+ C0

�d

N2
. (3.44)

Therefore, for N large enough, for all positive integer k ≥ 1 we can bound the expectation
in (3.39) as following

1

Nd−1

∑

y∈�+
N

EμN

[∫ T

0
ds

∣∣∣η�
s (y − �e1) − b(y/N)

∣∣∣
]

≤ 1

Nd−1

∑

y∈�+
N

{∫ ∣∣∣η�(0) − b(y/N)

∣∣∣
(
τ−(y−�e1)f̄

y,N

T

)�
dν

α,�
b(y/N)(η)

− kD0
�,0

(√(
τ−(y−�e1)f̄

y,N

T

)�
, ν

α,�
b(y/N)

)
− kD̃

b,
y
N

�,0

(√(
τ−(y−�e1)f̄

y,N

T

)�
, ν

α,�
b(y/N)

)}

+ 2
k

N

(
CT + C0

�d(� + 1)

N

)
.

This last expression is bounded above by

1

Nd−1

∑

y∈�+
N

sup

f ∈A
y
N
�

{∫ ∣∣∣η�(0) − b(y/N)

∣∣∣f (η)dν
α,�
b(y/N)(η) − kD0

�,0

(√
f , ν

α,�
b(y/N)

)

− kD̃
b,

y
N

�,0

(√
f , ν

α,�
b(y/N)

)}
+ 2

k

N

(
CT + C0

�d(� + 1)

N

)
, (3.45)

where, for u ∈ �,

Au
� =

{
f : f ≥ 0,

∫
f (ξ)dν

α,�
b(u)(ξ) = 1

}
.

Further, since the function

u → sup
f ∈Au

�

{∫ ∣∣∣η�(0) − b(u)

∣∣∣f (η)dν
α,�
b(u)(η) − k D0

�,0

(√
f , ν

α,�
b(u)

)
− kD̃

b,u
�,0

(√
f , ν

α,�
b(u)

)}
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is continuous on �, from Lemma 3.5, for all positive integers � and k, the limit when N ↑ ∞
of the expression (3.45) is equal to
∫

�+
du E

[
sup

f ∈Au
�

{∫ ∣∣∣η�(0) − b(u)

∣∣∣f dν
α,�
b(u)(η) − k D0

�,0

(√
f , ν

α,�
b(u)

)
− kD̃

b,u
�,0

(√
f , ν

α,�
b(u)

)}]
.

Since
∫ |η�(0)−b(u)|f dν

α,�
b(u)(η) ≤ Cb for some positive constant Cb that depends on ‖b‖∞,

the integral on �+ in the last expression is bounded by
∫

�+
duE

[
sup

f ∈Au
�,k,Cb

{∫ ∣∣∣η�(0) − b(u)

∣∣∣f (η)dν
α,�
b(u)(η)

}]
,

where for a positive constant C, Au
�,k,C is the following set of densities,

Au
�,k,C =

{
f ∈ Au

� , D̃
b,u
�,0

(√
f , ν

α,�
b(u)

)
≤ C

k
, D0

�,0

(√
f , ν

α,�
b(u)

)
≤ C

k

}
.

We first consider the limit when k ↑ ∞ and use the usual technique in the replacement
lemma. Since for any � > 1, any constant C > 0 and any u ∈ � the sets Au

�,k,C are compacts
for the weak topology, for all � > 1

lim sup
k→∞

sup
f ∈Au

�,k,C

{∫ ∣∣∣η�(0) − b(u)

∣∣∣f (η)dν
α,�
b(u)(η)

}

= sup
f ∈Au

�,0

{∫ ∣∣∣η�(0) − b(u)

∣∣∣f (η)dν
α,�
b(u)(η)

}
,

where

Au
�,0 =

{
f ∈ Au

� , D̃
b,u
�,0

(√
f , ν

α,�
b(u)

)
= 0, D0

�,0

(√
f , ν

α,�
b(u)

)
= 0

}
.

By dominated convergence theorem, it is then enough to show that,

lim sup
�→∞

E

[
sup

f ∈Au
�,0

{∫ ∣∣∣η�(0) − b(u)

∣∣∣f (η)dν
α,�
b(u)(η)

}]
= 0.

Now, it is easy to see that, due to the presence of the jumps of particles in the Dirichlet form
D0

�,0 and the presence of the creation and destruction of particles in D̃
b,u
�,0 the set Au

�,0 = {1}.
Thus, to conclude the proof of the lemma, it remains to apply the usual law of large num-
bers. �

Proof of Proposition 3.4 Let Q∗ be a limit point of the sequence (QμN )N≥1 and let
(QμNk )k≥1 be a sub-sequence converging to Q∗. By Lemma 3.2, Q∗ is concentrated
on the trajectories that are in L2([0, T ];H 1(�)). For 0 < c < 1 and for μ(·, ·) ∈
D([0, T ], M0

1(�)), such that μ(t, du) = ρ(t, u)du with ρ(·, ·) ∈ L2([0, T ];H 1(�)), de-
note by FG

c (μ) the functional

FG
c

(
μ(·, ·)) =

∫ T

0
ds

∫

�(1−c)

du
{
Gs(u) (2c)−1

[
ρ(s,u + ce1) − ρ(s,u − ce1)

]}

+
∫ T

0
ds

∫

�

du∂e1Gs(u)ρ(s, u) −
∫ T

0
ds

{∫

�

b(u)n1(u)Gs(u)dS

}
.
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From Lemma 3.11 and the continuity of the function μ → F̂ G
a,c(μ), we have

lim sup
c→0

EQ∗[∣∣∣FG
c (μ)

∣∣∣
]

= 0. (3.46)

On the other hand, an integration by parts and Taylor expansion up to the second order of
the function Gs(·) permit to rewrite FG

c as

FG
c

(
μ(·, ·)) =

∫ T

0

1

2c

∫

(�\�(1−2c))
+

Gs(u)ρ(s, u)duds

−
∫ T

0

1

2c

∫

(�\�(1−2c))
−

Gs(u)ρ(s, u)duds

−
∫ T

0
ds

∫

�

b(u)n1(u)Gs(u)dS + R(c),

where R(c) ≡ R(G,c) is a function vanishing as c ↓ 0. Further one has, see Theorem 5.3.2.
of [5], that

lim
r→0

1

|B(u, r) ∩ �|
∫

B(u,r)∩�

ρ(s, y)dy = Tr(ρ(s, u)) a.e u ∈ �, ∀s ∈ [0, T ], (3.47)

and then by dominated convergence theorem

lim
c→0

FG
c

(
μ(·, ·))=

∫ T

0
ds

∫

�

(Tr(ρ(s, u)) − b(u))n1(u)Gs(u)dS.

This, together with (3.46) implies

EQ∗
[∣∣∣∣
∫ T

0
ds

∫

�

(Tr(ρ(s, u)) − b(u))n1(u)Gs(u)dS

∣∣∣∣

]
= 0,

which concludes the proof. �

4 Proof of Theorem 2.2

Denote by QN
s := Q

N,α

νs
α,N the probability measure on the Skorohod space D

([0, T ], M
)

induced by the Markov process (πN
t ) ≡ (πN(ηt )), when the initial measure is νs

α,N . The
main problem in proving Theorem 2.2 is that we do not know that the empirical initial
measure at time zero converges to a macroscopic profile according to definition (2.23). If
this would be the case the result would be a corollary of Theorem 2.1. Taking this in account
we first prove that QN

s is a tight sequence and that all its limit points are concentrated on
weak solution of the hydrodynamic equation for some unknown initial profile. This is in
contrast with the usual hydrodynamic limit, in which one associates the initial empirical
measure to a profile. Then we show the uniqueness and the atractivity of the stationary
solution of (2.21) for the evolution (2.15) to conclude.

Denote by AT ⊂ D([0, T ], M) the class of profiles ρ(·, ·) that satisfies conditions (IB1),
(IB2) and (IB3). The first step to show Theorem 2.2 consists in proving that all limit points
of the sequence (QN

s ) are concentrated on AT :
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Proposition 4.1 The sequence of probability measures (QN
s ) is weakly relatively compact

and all its converging subsequences converge to the some limit Q∗
s that is concentrated on

the absolutely continuous measures π(t, du) = ρ(t, u)du whose density ρ satisfying (IB1),
(IB2) and (IB3).

The proof of Proposition 4.1 follows the same steps needed to show Theorem 2.1. We
just have to show the analogous of Lemmas 3.6–3.9 when the measure μN in the statements
of these lemmas is replaced by νs

α,N . The only lemma to be slightly modified is Lemma 3.8,
see Lemma 4.2 given next. Recall that γ : � → (0,1) is a smooth profile equal to b at the
boundary of �. Let hN be the density of νs

α,N with respect to the measure ν
α,N
γ (·) .

Lemma 4.2 There exists positive constant C = C(‖∇γ ‖∞) depending only on γ (·) such
that for any a > 0

(1 − a)D0
N(

√
hN, ν

α,N
γ (·) ) + Db

N (
√

hN, ν
α,N
γ (·) ) ≤ C

a
Nd−2.

Proof By the stationary of νs
α,N ,

∂tHN(t) =
∫

SN

hN LN log
(
hN
)
dν

α,N
γ (·) = 0.

Recalling that the generator LN has two pieces and applying the inequality a(logb −
loga) ≤ −(

√
a − √

b)2 + (b − a) for positive a and b, we obtain

0 =
∫

SN

hN LN log
(
hN
)
dν

α,N
γ (·)

≤ −2N2 D0
N

(√
hN, ν

α,N
γ (·)
)− 2N2 Db

N

(√
hN, ν

α,N
γ (·)
)

+ N2
∫

SN

L0
NhNdν

α,N
γ (·) + N2

∫

SN

Lb
NhNdν

α,N
γ (·) .

We then apply the same computation as in the proof of Lemma 3.8 ((3.15) and (3.16)). �

Proof of Theorem 2.2 Let Q∗
s be a limit point of (QN

s ) and (Q
Nk
s ) be a sub-sequence con-

verging to Q∗
s . Let ρ̄ be the stationary solution of (2.15), see (2.21). We have by Proposition

4.1 the following:

lim
k→∞

QNk
s

{∣∣∣
〈
πN

T ,G
〉− 〈

ρ(u)du,G
〉∣∣∣
}

= Q∗
s

{∣∣∣
〈
ρ(T , ·),G〉− 〈

ρ(u)du,G
〉∣∣∣1{AT }(ρ)

}

≤ ‖G‖∞Q∗
s

{∥∥ρ(T , ·) − ρ(·)∥∥
1
1{AT }(ρ)

}
,

where ‖v‖1 denotes the L1(�) norm of v. By the stationary of νs
α,N

QNk
s

{∣∣∣
〈
πN

T ,G
〉− 〈

ρ(u)du,G
〉∣∣∣
}

= QNk
s

{∣∣∣
〈
πN,G

〉− 〈
ρ(u)du,G

〉∣∣∣
}
.

Denote by ρ0(·, ·) (resp. ρ1(·, ·)) the element of AT with initial condition ρ0(0, ·) ≡ 0 (resp.
ρ1(0, ·) ≡ 1). From Lemma A.7, each profile ρ(·, ·) ∈ AT is such that for all t ≥ 0, λ{u ∈ � :
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0 ≤ ρ0(t, u) ≤ ρ(t, u) ≤ ρ1(t, u) ≤ 1} = 1 and λ{u ∈ � : ρ0(t, u) ≤ ρ(u) ≤ ρ1(t, u)} = 1,
where λ is the Lebesgue measure on �. Therefore

lim
k→∞

QNk
s

{∣∣∣
〈
πN,G

〉− 〈
ρ(u)du,G

〉∣∣∣
}

≤ ‖G‖∞
∥∥ρ0(T , ·) − ρ1(T , ·)∥∥

1
, P-a.s.

Note that the left hand side does not depend on T . To conclude the proof, it is enough to let
T ↑ ∞ and to apply Theorem A.10. �
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Appendix A

In this section we prove the existence and uniqueness of the weak solution of (2.15)
and (2.21). Further we show, in Theorem A.10 the global stability of the stationary solu-
tion of (2.15). The proof of these results is based on an extensive use of monotone methods,
see [21]. We were not able to find the precise reference in the literature, so we briefly sketch
them for completeness.

We need to introduce some extra notation. Let C 1,2([0, T ]×�) be the space of functions
from [0, T ]×� to R twice continuously differentiable in � with continuous time derivative.
Denote by

G := {G ∈ C 1,2([0, T ] × �),G(t, u) = Gt(u) pointwise positive,

G(t, u) = 0, ∀u ∈ �, ∀t ∈ [0, T ]}.
It is convenient to reformulate the notion of weak solution of (2.15) as following. A function
ρ(·, ·) : [0, T ] × � → [0,1] is a weak solution of the initial-boundary value problem (2.15)
if ρ ∈ L2(0, T ;H 1(�)) and for every G ∈ G

∫

�

du
{
GT (u)ρ(T ,u) − G0(u)ρ0(u)

}−
∫ T

0
ds

∫

�

du (∂sGs)(u)ρ(s, u)

=
∑

i,j

∫ T

0
ds

{∫

�

duAi,j (ρ(s, u))
∂2

∂i,j

Gs(u) −
∫

�

Ai,j (b(u))∂n1G(s,u)dS

}
(A.1)

where Ai,j (ρ) = ∫ ρ

0 Di,j (ρ
′)dρ ′. A function ρ+(·, ·) : [0, T ]×� → R is a weak upper solu-

tion of the initial-boundary value problem (2.15) if ρ+ ∈ L2
(
0, T ;H 1(�)

)
and for all G ∈ G

we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

i,j

∫ T

0
ds

{∫

�

duAi,j (ρ
+(s, u))

∂2

∂i,j

Gs(u) −
∫

�

Ai,j (ρ
+(s, u))∂n1G(s,u)dS

}

−
∫

�

du
{
GT (u)ρ+(T ,u) − G0(u)ρ+

0 (u)
}−

∫ T

0
ds

∫

�

du (∂sGs)(u)ρ+(s, u) ≤ 0,

Tr(ρ+(t, ·)) ≥ b(·) on �

ρ+(0, u) ≥ ρ0(u) u ∈ �.

(A.2)
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A weak lower solution ρ−(·, ·) : [0, T ] × � → R is defined reversing the inequalities in
(A.2). By a solution of the stationary problem (2.15) we mean a function ρ̄ ∈ H 1(�) so that
for all G ∈ C 2(�), pointwise positive vanishing on �

∑

i,j

{∫

�

duAi,j (ρ̄(u)))
∂2

∂i,j

G(u) −
∫

�

Ai,j (b(u))∂n1G(u)dS

}
= 0 (A.3)

As before we define upper and lower solutions of the stationary problem (A.3). A function
ρ̄+ is an upper solution for the stationary problem (A.3) if ρ̄+ ∈ H 1(�) and for all G ∈
C 2(�), pointwise positive vanishing on �,

⎧
⎪⎨

⎪⎩

∑

i,j

{∫

�

duAi,j (ρ̄
+(u)))

∂2

∂i,j

G(u) −
∫

�

Ai,j (ρ̄
+(u))∂n1G(u)dS

}
≤ 0,

Tr(ρ̄+) ≥ b on �.

(A.4)

A lower solution of the stationary problem (A.3) is defined reversing the inequality in (A.4).
Denote by H−1(�) the dual of H 1

0 (�), i.e. the Banach space equipped with the norm

‖v‖−1 = sup
f

{〈
v,f

〉 : ‖f ‖H 1
0 (�) ≤ 1

}
. (A.5)

To apply the monotone method we first show the following comparison principle.

Lemma A.1 Let ρ1 (resp. ρ2) be a lower solution (resp. upper solution) of (2.15), ∂tρ
i ∈

L2(0, T ;H−1(�)), for i = 1,2. If there exists s ≥ 0 such that

λ
{
u ∈ � : ρ1(s, u) ≤ ρ2(s, u)

}= 1,

where λ is the Lebesgue measure on �, then for all t ≥ s

λ
{
u ∈ � : ρ1(t, u) ≤ ρ2(t, u)

}= 1.

Proof Take s < t < T and δ > 0. Denote by Fδ the function defined by

Fδ(a) := a2

2δ
1{0≤a≤δ} + (

a − δ/2
)
1{a>δ}, a ∈ R.

Let Aδ := Aδ(T ) be the set

Aδ =
{
(t, u) ∈ [0, T ] × � : 0 ≤ ρ1(t, u) − ρ2(t, u) ≤ δ

}
.

By definition Tr(ρ1 −ρ2) ≤ 0 a.e. and therefore Tr(F ′
δ(ρ

1 −ρ2)) = 0. Since ρ1 (ρ2) is lower
(upper) solution of (2.15), we have that

∫ t

s

dτ
∂

∂τ

∫

�

Fδ(ρ
1(τ, u) − ρ2(τ, u))

=
∫

�

duFδ(ρ
1(t, u) − ρ2(t, u)) −

∫

�

duFδ(ρ
1(s, u) − ρ2(s, u))

≤ −δ−1
∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) · {D(ρ1)∇ρ1 − D(ρ2)∇ρ2}
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= −δ−1
∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) · D(ρ1)∇(ρ1 − ρ2)

− δ−1
∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) · {D(ρ1) − D(ρ2)
}∇ρ2. (A.6)

Since D(·) is strictly positive, see (2.19), the third line of (A.6) can be estimated by above

−1

δ

∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) · D(ρ1)∇(ρ1 − ρ2) ≤ − 1

δC

∫ t

s

dτ

∫

Aδ

du‖∇(ρ1 − ρ2)‖2.

(A.7)
Further, by the Lipschitz property of D(·) we have on the set Aδ , sup1≤i,j≤d |Di,j (ρ

1) −
Di,j (ρ

2)| ≤ M|ρ1 − ρ2| ≤ Mδ for some positive constant M . By Schwarz inequality, the
last line of (A.6) is bounded by

δ−1MA

∫ t

s

dτ

∫

Aδ

du‖∇(ρ1 − ρ2)‖2 + δMA−1
∫ t

s

dτ

∫

Aδ

du‖∇ρ2‖2 (A.8)

for every A > 0. By (A.6), (A.7), (A.8) and choosing A = M−1C−1 to cancel the term in
(A.7) and the first term of (A.8) we have

∫

�

duFδ(ρ
1(t, u) − ρ2(t, u)) −

∫

�

duFδ(ρ
1(s, u) − ρ2(s, u))

≤ δC−1M2
∫ T

0
dτ

∫
du‖∇ρ2‖2.

Letting δ ↓ 0, we conclude the proof of the lemma because Fδ(·) converges to the function
F(a) = a1a≥0 as δ ↓ 0. �

We immediately obtain the following.

Proposition A.2 Let m0 : � → [0,1] be a measurable function. There is a unique weak
solution ρ(t,m0) of (2.15) with initial datum m0.

Proof Existence of weak solution of (2.15) can be deduced by the tightness of the sequence
QN

μN
where μN is the probability measure associated to the initial profile m0 according

to (2.23). Uniqueness is a consequence of Lemma A.1. �

Corollary A.3 Let m0 be a lower stationary solution of (A.3). Let ρ(t,m0) be the solution
of (A.1) with initial datum m0 then ρ(t, u) ≥ m0(u) a.e. in (u, t).

The proof is an immediate consequence of Lemma A.1 with ρ1 := m0 and ρ2 := ρ. When
the initial datum of solution of (A.1) is an upper stationary solution we have:

Corollary A.4 Let m1 be a upper stationary solution of (A.3). Let ρ(t,m1) be the solution
of (A.1) with initial datum m1 then ρ(t, u) ≤ m1(u) for t ∈ [0, T ] and u ∈ �.

Next we show that when a lower (upper) stationary solution m0 (m1) is taken as initial
datum, the corresponding solution ρ(t,m0) (ρ(t,m1)) is monotone nondecreasing (nonin-
creasing) in time.
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Lemma A.5 Under the assumptions of Corollary A.3 ρ(t,m0) is a nondecreasing solution
of (2.15) on [0, T ].

Proof Corollary A.3 implies that ρ(s,m0) ≥ m0 for all s ≥ 0, since m0 lower solution.
Let ρ(t;ρ(s,m0)) be the solution of (A.1) starting at time t = 0 from ρ(s,m0). Then
ρ(t;ρ(s,m0)) ≥ ρ(t,m0) since the initial datum ρ(s,m0) ≥ m0. But ρ(t;ρ(s,m0)) =
ρ(t + s,m0) by uniqueness of weak solution then ρ(t + s,m0) ≥ ρ(t,m0) ≥ m0. �

Lemma A.6 Under the assumptions of Corollary A.4 ρ(t,m1) is a nonincreasing solution
of (2.15) for t ∈ [0, T ].

The proof is similar to the one of Lemma A.5.

Lemma A.7 Let m0 be a lower solution and m1 be an upper solution of (A.3), m0(·) ≤
m1(·) a.e. in �, we have

m0 ≤ ρ(t;m0) ≤ ρ(t;m1) ≤ m1 ∀t ∈ (0,∞).

The proof is an immediate consequence of the previous results.

Lemma A.8 Under the assumption of Lemma A.7 the solutions ρ(t;m0) and ρ(t;m1) exist
for all t ∈ [0,∞) and they converge in Lp(�) for p ∈ [1,∞) to limits ρ�(·) and ρ�(·), both
solutions of (A.3). Further

ρ�(u) ≤ ρ�(u) a.e.

Proof Since ρ(t;m0) is nondecreasing in t and ρ(t;m0) ≤ m1 for any t ≥ 0, ρ(t;m0) con-
verges almost everywhere in � as t → ∞ and ρ�(·) ∈ L∞(�). By the monotone conver-
gence theorem ρ(t;m0) → ρ�(·) for p ∈ [1,∞). Next we show that ρ�(·) solves (A.3). Take
as test function in (A.1) the following function

β(t)F (u); F(u) > 0; C ≥ β(t) > δ > 0; β ′(t) ≥ 0, (u, t) ∈ � × R
+

β ∈ C2(R+), F ∈ C2(�) vanishing at the boundary. Then for all t > 0, see (A.1), we have
∫

�

du
{
β(t)F (u)ρ(t, u) − β(0)F (u)ρ0(u)

}−
∫ t

0
dsβ ′(s)

∫

�

duF(u)ρ(s, u)

=
∑

i,j

∫ t

0
dsβ(s)

{∫

�

duAi,j (ρ(s, u))
∂2

∂i,j

F (u) −
∫

�

Ai,j (b(u))∂n1F(u)dS

}
. (A.9)

Divide by t the left and right side of (A.9) and then let t → ∞. For the left side we have

1

t

{∫

�

du
{
β(t)F (u)ρ(t, u) − β(0)F (u)ρ0(u)

}−
∫ t

0
dsβ ′(s)

∫

�

duF(u)ρ(s, u)

}
→ 0.

(A.10)
By continuity of A(·) and since by assumption lims→∞ β(s) = β(∞) > 0

lim
t→∞

1

t

∑

i,j

∫ t

0
dsβ(s)

{∫

�

duAi,j (ρ(s, u))
∂2

∂i,j

F (u) −
∫

�

Ai,j (b(u))∂n1F(u)dS

}

= β(∞)
∑

i,j

{∫

�

duAi,j (ρ�(u))
∂2

∂i,j

F (u) −
∫

�

Ai,j (b(u))∂n1F(u)dS

}
. (A.11)
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By (A.10) we then obtain

β(∞)
∑

i,j

{∫

�

duAi,j (ρ�(u))
∂2

∂i,j

F (u) −
∫

�

Ai,j (b(u))∂n1F(u)dS

}
= 0.

Therefore ρ� is a solution of (A.3). The same can be argued for ρ∗. �

Proposition A.9 There exists an unique weak solution of (2.21).

Proof Existence of weak solution ρ̄ of (2.21) is warranted by the tightness of the se-
quence QN

s , see Proposition 4.1. Arguing as in Theorem 5.2, p. 277 of [15] and comments
p. 276 before Theorem 5.1 we deduce that maxu∈� |∇ρ̄| ≤ M and ρ̄ ∈ H 2(�). Further one
can show, as in Theorem 6.1. p. 281 of [15], that ρ̄ui

, i = 1, . . . , d , are Holder continuous
on �. The uniqueness is then a consequence of a comparison principle, see for example
Lemma 10.7, p. 268 of [10]. �

Theorem A.10 (Global stability) Let D(·) in (2.15) be Lipschitz. Let ρ(t, ρ0) be the solution
of (2.15) with initial datum ρ0, 0 ≤ ρ0(u) ≤ 1, u ∈ �, and ρ̄ the stationary solution of (2.15).
We have for all p ≥ 1

lim
t→∞

∫

�

|ρ(t, u) − ρ̄(u)|pdu = 0.

Proof Apply Lemma A.8 taking m0(u) = 0 and m1(u) = 1 for u ∈ �. By the uniqueness
of the stationary solution of (2.15), see Proposition A.9, we deduce that ρ∗ = ρ� and the
theorem is proved. �
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